1@ Available online at www.sciencedirect.com
— JOURNAL OF

g@ SCIENCE@DIRECT. GEOMETRY anp
PHYSICS

ELSEVIER Journal of Geometry and Physics 48 (2003) 339-353

www elsevier.com/locate/jgp

Closed generalized elastic curvessiil)
J. Arroyo, O.J. Gardy J.J. Men@a

Departamento de Matematicas, Facultad de Ciencias, Universidad deMaaco/Euskal Herriko
Unibertsitatea, Aptdo 644, 48080 Bilbao, Spain

Received 11 December 2002

Abstract

We study the existence and stability of (closed) curve® () which are critical points of generic
curvature energy functionals. Firstly, we compute the first and second variation formulas and obtain
first integrals of the Euler—Lagrange equations, then we establish conditions under which critical
points close up. We apply the results to analyze two concrete situations: a natural generalization
of the classical Euler—Bernoulli elastic functional and a constrained version of the total curvature
functional.
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1. Introduction

The curvaturec, of a given curvey : | — M" in a Riemannian manifold, can be
interpreted as the tension thateceives at each point as a result of the way it is immersed
in the surrounding space. Bernoulli proposed in 1740 a simple geometric model for an
elastic curvein R?, according to which aelastic curveor elasticais a critical point of
theelastic energyunctionalfy «?. Elastic curves ifR? were already classified by Euler in

1743 but it was not until 1928 that they were studied al®3y Rador{19], who derived

the Euler-Lagrange equations and showed that they can be integrated by quadratures. The
elastica problemin real space forms has been recently considered under different approaches
(see for instancgr,11-14).
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More generally, for a given differentiable functid®(x), the geometric importance of
minimizing acurvature energyunctional of the typ@(y) = [ P(x), defined on a certain
space of curves in the three-dimensional Euclidean sﬁépwas pointed out by Blaschke
in his book on Differential Geometrip], where it is refereed to &adon’s problemOn
the other hand, actions defined 6y(y) = f P(«) in constant curvature space—times have
been used to describe models of relat|V|st|c particle witleing the proper acceleration of
the particl€g/8,15,16,18]

Our purpose here is to study critical points of curvature energy functionals in the standard
2-sphere paying special attention to the closed ones. Apart from their own geometric signif-
icance, closed critical points @ (y) = f P(«) have been used also to provide construction
methods of Chen—Willmore submanlfolds in higher dimensional spli21@4.7]

First part of the paper develops the common starting point for the various particular cases
that will be explored at the last sectionsSaction 2ve obtain the Euler—Lagrange equation
of ®, and briefly derive its first integral, since they are basically known in the literature.
Guided by the ideas of Langer and Sing&?], we use a coordinate system adapted to
the problem, to give irBection 3conditions to be satisfied by critical points with periodic
curvature in order to close up. Bection 4ve obtain an expression for the second variation
formula which allows us to get some applications to the stability of constant curvature
critical points.

The two final sections are devoted to apply the previous results to study natural choices
of concrete energy functionals. We choose, two particularly interesting concrete situa-
tions. In both cases, we solve the Euler—Lagrange equation obtaining periodic solutions
and give an explicit description of the closure condition by using the Jacobi elliptic
functions.

The simplest choice faP(x) is P(x) = «",r € NU {0}, and we refer to the critical points
of ® asgeneralized r-elasticalf r = 0, thenP(k) is constant andeneralized O-elastica
of ® are simply geodesics. = 1, we have tha® is thetotal curvature functiongland
it has been studied if8,4]. In particular, there are no closed critical points of th&al
curvaturein the 2-sphere. When= 2, we have the classicalastic curvesClosed elastic
curves in the 2-sphere have been classified by Langer and $ir®jekVe show that, for
r > 2, there are no closegeneralized r-elasticin S?(G) (the 2-sphere of curvaturg),
other than geodesics. This surprising result forces us to enlarge the class of numbers where
r moves if we expect to find non-trivial closed critical points. If we want to find periodic
solutions of the Euler—Lagrange equation we proveust be lower than the curvature of
the spheres. AssumingG = 1, andr = 1/2, we show that closed critical curves3A(1)
form a countably infinite family.

On the other hand, it is known, that plane curves are the critical points athe
curvaturefunctional inR2 [3]. It is an interesting question whether or not other critical
points inR? of this functional appear when we take variations constrained to the sphere.
This leads us to consider Bection 6functionals of the typeF* (y) = f (2 + 212 ds,

A > 0, defined on spaces of curves3f(G). This type of functionals have also appeared as
models of a relativistic particle with maximal proper acceleraf®h6). If » > G the only
closed critical points are geodesicsili= G, we have theotal R3-curvatureconstrained

to S?(G). In this case circles are the only closed critical points as expected. However, we
prove that there is a family of generalized helice$%al) which are critical points for the
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problem with pinned ends and first boundary data. & G, we show that there exist a
countably infinite family of closed critical points and determine the multiple covers of the
geodesics that are stable.

2. Preliminaries

We shall denote byD the space of regulaf*-curves inS?(G), that is the space of
C*immersions of = [0, 1] in S*(G),

D:{y:l —>SZ(G);yeC4(I);(:j—);¢0},

For a given curver in D, we denote by(r) = dy/dr = y’ the tangent vector field(z)
denotes unit tangent vectars) = (V, V)¥/2 the speed of; N(¢) the unit normal to/; and
« denotes the oriented geodesic curvature of S2(G).

We takeP(r) a C* function and consider the followincurvature energy functional

L 1
Oy = f P(k) = / P(k)ds = / P()vde (1)
y 0 0

acting onD.

Let us assume thdf(w, 1) = y,(®) : (—&,&)x — S?(G) is a variation ofy in D with
y(0, ©) = y, whose variation vector field along the cunvés W = W(r) = (aI/ow)(O0, 7).
We shall also writedd/ = V(w, 1), W = W(w, 1), T = T(w, 1), v = v(w, t), N = N(w, 1),
etc., with the obvious meanings. As usual we use denote the arclength parameter and
y(s), V= V(w,s), W = W(w,s), T = T(w, s), v = v(w, ), etc., for the corresponding
reparameterizations. There [0, L], whereL is the length ofy.

The restriction of acurvature energy functiondb a variation is denoted by the same
letter,® (w) = O(y,,(1)). Now we want to compute the first derivative®{(w).

We shall make use of the following notatioR‘(x) = dP/dk, and

K=P N,  JT= &P — PG)T + %—':N,
2 p/

E= ((KZ +G)P (k) + P KP(K)) N. 2)
ds?

By using Lemma 1 of12], the firstFrenet formulavyT = «N and integrating by parts,
one can obtain the following proposition.

Proposition 1 (First variation formula).Let I'(w, s) = y,,(¢) be a variation ofy by curves
inDandB®(y) = fy P(x) a curvature energy functional acting d». Then the following
formula holds

de
dw

L
- ([ (& W) ds) + BIW, ¥]5, ®3)
0

w=0

where the boundary term is given ByW, y]5 = [(K, V7 W) — (7, W)]§.



342 J. Arroyo et al./ Journal of Geometry and Physics 48 (2003) 339-353

Now, we may se@® acting on subspacesBfformed by curves which satisfy, in addition,
asuitable set of boundary conditions. With an eye in our applications, we first consid®@r that
acts on2, the space of smooth closed curveS&(G ) (although the following computations
might be equally apply to other cases, for instance, to the space of c@pyewith pinned
ends and given first order boundary data). In such cases, the above boundary term drops
out. Thus a critical point 0® in such spaces will be characterized by Ehéer—Lagrange
equationg = 0, in other words by

2 p/
(k% + G)P'(k) + AL K P(K). 4)
ds?
One may want to consult0] for a different derivation of4).

If d P’/ds = 0O, then we may assumB(x) = x + A and either we do not have critical
points ifA = 0, or the only closed critical points are circles of curvatirg. otherwise3].
This case is basically thtetal curvaturefunctional.

Assume @' /ds # 0. Then& = 0 on a critical pointy of @. To facilitate integration of
the Euler—Lagrange equations we look for a first integral of it. F(@nwe observe that
we may write€ = Vr 7+ GK, hence

1d
02(5,j):<VTj+G]C,j>:§$(

and thereforé.7, J) + G (K, K) is constant along, which in combination with{2) allows
us to obtain a first integral & = 0

(T, T) + G, K))(s),

dp’ 2 / 2 / 2
s + (kP (k) — P(k))" + G(P (k) =d. )
First integrals of the Euler—Lagrangguations (4)Jn space forms are basically known
[1,10,16]

3. Closure conditions

Since we are mainly interested in closed solutions of the Euler—Lagrange equations, we
must seek for periodic solutions (8). Any periodic solution will give rise to a unique (up
to isometries) curve i8?(G) which need not be a closed curve. On the other hand, in their
study of the classical elastica in two-dimensional space f¢i2is Langer and Singer find
Killing fields along an elastic curve(s) expressible in terms of the local invariants of the
curve and use them to determine closure conditions. By using this approach we can also
establish closure condition for critical curves with periodic curvature in the general case
[1].

Lety : | =[0,1] — S%(G) be an immersed regular curve in the 2-sphere of constant
sectional curvatur&; . A vector field W is called aKilling field alongy [12], if for any
variation in the direction of¥ we have

W_%_g ®)
Jw ow
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From Lemma 1 of12], we can see tha¥ is a Killing field alongy, if and only if,
(VrW, T) =0, (1)

(VZW, N) + G(W, N) = 0. (8)

Moreover, it was proved ifil2] that a Killing field along a curver contained in a two-
dimensional real space form is the restrictiorytof a Killing field defined on whole space.
Then we have the following proposition.

Proposition 2. Lety : | = [0, 1] - S?(G) be an immersed regular curve 8t(G) which
is a critical point of ® acting onD. Then the vector field’ defined as in2) is a Killing
field alongy and, therefore it is the restriction toy of a Killing field of S*(G).

Proof. Using (2), we haveV;J = ((d2P'/ds?) + (kP'(k) — P(x)))N which trivially
satisfies(7). Differentiating again and using the Euler—Lagrargpiation (4) we have
(V2J, N) = —G(dP'/ds) which shows(8). O

Assume that is a periodic solution of5) with periodp. Let us denote by the curve in
S?(G) of curvaturex. Now, one can use the above proposition to choose spherical coordi-
natesx(6, ¥) = (cosd siny, sindsiny, cosy), so that its equator gives the only integral
geodesic of7 : xy = bJ. Combining this with(2) and (5) we have

(T xp) kP’ (k) — P(k)

79 = Gn2y = bd =GP WD) ©)

Hence we have the following proposition.

Proposition 3. Letx be a periodic solution o) with periodp. Lety be the corresponding
curve inS%(G). Theny is closed(and therefore a critical point 0®(y) = fy P(x) in 2),
if and only if its progression angle in one period of the curvature

10 _ /‘p kP’ (k) — P(k) ds. (10)
0 b(d— G(P'(x)?)

is a rational multiple o2r.

Remarks. In many applications it is also important to determine the progression angle
range of variation as accurately as possjB|&2]. A® depends on two parametets R,

b € R. When looking for periodic solutions ¢5), 4 is normally restricted to lie in a certain
interval C. Then, if we want to know the variation of® asd moves inC, we must get
some control on the normalization factorThis is possible in many cases. lbe a given
nurr;ber inC and denote by, a periodic solution of5) andy, the curve with curvature;

in S2(G).

(1) Assume first thak, reaches a zero of’ at some pointg and thaty, crosses the
equator determined by the rotation figldSinceP’ (x(sg)) = P’(so) = 0, we have that
(P')2 takes an absolute minimum itsg) and, thereforé7]2 = d — G(P')? takes its
maximum value ory, atsg, in other words/,; crosses the equator at the instaptand
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theny(so) = /2. Hence evaluation ap of |xg|2 = b?%|7]2 = sin?y/ G, would give
Gk?d = 1, which can be used to simplifit0).

(2) As another example, assume now thahas a vertex afy (ks (so) = 0), which is not
either of the poles %(G) as determined by : (kq P’ (kq) — P(kq))(so) # 0. Let X be
the integral curve off aty,;(so) = po and denote byg the geodesic curvature af at
po- Thenkg = —GP'/ (kg P' (kg) — P(x4))(so), which combined witl{2) and (5)gives
bxol? = b2 17 = bP(ka P (ka) — P(ka))? = 1/ (kg + G) = (aP'(ka) — Plka))?/Gd.
Therefore, we geBk?d = 1 again.

4. Second variation formula

Let us compute now the second variation formula. Since our applications will be focused
mainly in closed critical curves of the sphere, we restrict ourselvexstte space of closed
curves inS?(G). Assume thay is a critical point of® : 2 — R, @(y) = fy P(k) in
the real space forn$?(G). For any variation ofy in £2, I'(w, s), the first derivative is
dO/dw = f% (€, W) and, therefore, sinc&(y) = 0, we can write

d’e
— = /(W, Vwé). (12)
de w=0 Y

We may assume tha¥'(s) = ¢(s) N(s), then

d’e
| = /yd)W(N,E). 12)

Now
W(E, N) = (k2P"" + kssP" + (kK2 + G)P" 4 kP — PYW(x)
+ 2, P W(ks) + P Wi(kss). (13)
But using formula (5) of Lemma 1[12], we have
W(k) = pss+ (c + G)¢. (14)

On the other hand, by formul@) of the same lemmaW, 71 = —(VrW, T)T = «¢T.
Then,W(k;) = W(T(k)) = [W, T](x) + T(W(k)) = ¢xks + (W(k))s, Obtaining thus

W(ks) = pssst (K2 + G)ps + 3csp. (15)
Analogously,W(kse) = ¢rkss+ (W(ky))s would give
Wiksd) = dsssst (k2 + G) s+ Sicicseps + (32 + ducs b (16)

Hence combinind12)—(16)and integrating by parts, we obtain after a long computation
the following proposition.
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Proposition 4. Assume thay is a critical point with curvaturec of the curvature energy
functional® : 2 — R, O(y) = fy P(x) acting on the space of closed curves of the sphere

S%(G), then

dz@ 2 2 2
G|, = [t [ mast+ [ mowe a7)
where
mi(s) = P"(k),  ma(s) = 2(? + G) P (i) + P’ (k) — P(x),
d2p” dp” d2p’ dp’
— (2 Dl 2 2 2 p ar
m3(s) = (% + G) =~ + () == + o7+ G?P" () + e + 36—
+ k(% + G)P (k) — (kK% + G) P(k). (18)

In many applications, circles are critical points of energy functionals. For instanke, if
is an even function then geodesics are always critical points. In such cases second variation
formula simplifies to the following proposition.

Proposition 5. Lety be a circle with constant curvature= « of a spheres?(G). Assume
that y is a critical point of the energy function® : 2 — R, ©(y) = fy P(x) acting on

closed curves of the sphe®8(G). Then the second variation formula pis
d’e
dw?

= / $2.P" (@) — / (2(c? + G)P" () + aP' (o) — P(a))$?
w=0 Y Y
+ / @+ G)((&® + G)P"(a) + P () — P(e))d>. (19)
Y

Let us denote by™ the m-cover of the above circlg. We parameterize it ag" (s) =
(rcos(s/r), rsin(s/r), 0), s € [0, L = 2zmr], wherer = («? + G) /2 is the radius of
y. Then we can write) as a Fourier seriegi(s) = (ao/2) + Y, 1lan COS(h(s/mr)) +
by sin(h(s/mr))], which can be put ir{19).

If P”(a) # 0 we get

i 2
37(2 = nm(az + G)3/2P//(a)(1 — é‘)a_zo 4 nm(aZ + G)3/2P//(o[)
w=0
| 2 .2 h\2 h\2
XZ (ah+bh) E -1 Z _1+§. , (20)

h=1

where

C o (22)

T @+ GPP @)
If P”(a) =0, then

d’e _ a2 I h\?
| = — P(a)G {rrm(otz +G) 1/250 + h; [(a,f +b3) (1 - (;71) )” .

(22)
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In our context, we shall say that a critical pojnbf © is stablg if for any variationy,, of

v, (2@ /dw?)|,—0 > 0. By inspection of the above formulé®0) and (22)we can draw
some consequences about the stability of circles in spheres. For instaRCéy)if= 0

and P(«) # 0, then we see frorR2) that there are choices of the variation fi&itdwhich
makes negative the second derivative. Proceeding in a similar way we obtain the following
proposition.

Proposition 6. Let® : 2 - R, O(y) = fy P(x), a curvature energy functional acting

on the space of closed curvesS3i(G). Assume that a circlg of curvatureq is a critical
point of ® and denote by™ the m-cover of. Theny™ is stable if and only if P”(«) > 0

and
GP(x)
(1 ) =+ “

In particular, ify is a geodesic, we have the following corollary.

Coroallary 7. Under the conditions of the above propositisappose thay is a geodesic
in S2(G). Theny™ is stable if and only if P”(«) > 0 and

/ P(0)
Condition(24)is equivalent to
1 1 P(0) 1 1
o () < pe =n(x) .

5. Generalized elastic curves

The most natural choice fdt(x) is P(k) = «",r € N,and®(y) = fy " Ifr =1, itisthe
total curvature functional and one can easily see ftéhthat there are no solutions of the
Euler—Lagrange equations.Af= 2, @ (y) = fy «? is the classicaEuler—Bernoulli elastic

functional whose closed critical points 83(1) have been studied and classified by Langer
and Singef12]. Now assume thatis a natural number greater than 2 and, without loss of
generality, thaG = 1. If « is constant, then frortd) we havec ~1((r — 1)k? +r) = 0 and
then there are no critical points of constant curvature other than geodesiegeté not a
constant function, then we could use the first integral of the Euler—Lagremggtion (5)

to get

r2(r — 1)2/(2(’72)/%2 =d— (r— D% — A2, (26)
The curvaturec of a closed critical point 0f® should be a periodic solution @26).

Thenk(s) € [B, «], where anda are the minimum and maximum efs), respectively,
what would imply that they are roots of the polynomi@lx) = d — (r — 1)%x% —
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r2x¥=2 4 > 0. But theng should be positive, otherwise there would exist a peint
with x(sp) = 0 and we would have fron26) thatd = 0, which is impossible. This is

a contradiction sinc€ (x) has only one positive root. Hence we have the following pro-
position.

Proposition 8. Let® : 2 — R, O(y) = fy «", r € N, a curvature energy functional
acting on the space of closed curvesséfl). Then

1. if r = 1, there are no critical points 0® (no matter if they are closed or ot

2. if r = 2, O is the classical Euler-Bernoulli elastic functional and its closed critical
points have been classified by Langer and Sirgj2};

3. if r > 2, the only closed critical points @ are the geodesics

Geodesics are absolute minima i 2 is even and froni19) we see that on a geodesic,
the second derivativ@?® /dw?)|,,—o = 2 [ (¢sst+¢)? > 0if r = 2 and vanishesidentically
if r > 2.

The surprising result obtained in the above proposition leads one to ask if, instead we
might find non-trivial closed critical points whetis not a natural number. For simplicity,
we assume that= 1/2 and thai® acts on2 the space of convex (> 0) closed curves of
S?(1). From the Euler—-Lagrangsguation (4)we see that the only solutions with constant
curvature are the circles with = /r/(1—r) = 1. Assuming that the curvature is not
constant, we have to look for periodic solutions of the first inte@paWhich forr = 1/2
reduces to

Kf = —4%(k? — 4dk + 1), (27)

with d > 0. Actually periodicity condition imply/ > 1/2. HenceQ(x) = —4x?(x% —
4dx + 1) has two positive solutions and ¥/« with « > 1. Combining(27) and formula
2.226 of[9], we obtain

20(1+ o?)
A+ a?)2+ (1 —a?)2cos (s) — 2a(a? — 1) sin 20(s)’

(28)

Ka(s) =

wherep(s) = s — arctanl/a), d = (1 + a?)/4a, a € (1, 00). Thusk(s) is a periodic
solution of (27) which reaches its minimum value g{(0) = 1/« and the maximum at
ky(1/2) = a. Therefore, we have proved that there exists a 1-parameter fauply); o €
(1, 00)} of periodic solutions of27) which are given by(28). Let {y,; o € (1, c0)} be the
corresponding 1-parameter family of curves in the 2-sphere. These are our candidates to be
closed critical points 0.

Now, we are in condition to apply rema(R) at the end oSection 3 and we may take
b = 1 in Proposition 3Hence, a curve of the above family will close up, if and only
if, it satisfies the closure conditidi0), that is if and only if, the angular progression in one
period ofk,, which we denote now by

. 3/2
Ala) = _/ (M) ds, (29)
o \4dk,(s)—1
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is a rational multiple of 2. By combining(27) and (29)andd = (1 + «?) /4« one has

A — 2/-11 /(1+ Olz)/405)K1/2
T e A= (A + @) Ja)0)/ — (L) (@ — )

which after some computations and using formulas 3.137-3 and 3.13]9Bgife

’

1— p2
2—p2

T

[(a= D1 (5.0 p) + kP (30)

Ala) = -2

whereK(p), I1(/2, v, p) are the complete elliptic integrals of the first and the third kind,
respectively, of modulup = /(a? — 1)/a andv = p2(2— p?). Now, p moves in(0, 1) as

a varies in(1, co), then, we have lipp,.o A(a) = —/27 and lim,_.1 A(x) = —m. Hence
the angular progression in one periodygf A(«) increases continuously from+/2x to

—m asa varies from 1 toco. Hence, we have proved the following proposition.

Proposition 9. For any couple of integera, n satisfyingn < 2m < +/2n, there exists a
convex curvey, », which is a closed critical point 00(y) = [, «Y/2 in the unit sphere

S?(1). ym.n closes up after n periods of its curvatugiven in(28)) and m trips around the
equator(seeFig. 1). Any closed generalized /2)-elastica is obtained as above

To show that a pair of integets:, n) determines thgeneralized1/2)-elasticauniquely
would require to show monotonicity of (@) along (1, co). We have established this nu-
merically as part a ofig. 2shows.

Finally, let us denote’’ them-cover of the circle of geodesic curvature 1. Itis the only
circle of the sphere that is a critical point f&x(y) = fy /2. By using(20) and (21)e see

thate?" is unstable. Actually, ifm| = 1, 2, then(d’®/dw?)|,,—0 < 0, and they are “local
maxima”.

Fig. 1. Curvesy 3 andys g closed critical points of, K2,
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Fig. 2. (a) P(x) = «Y/?; (b) P(k) = (k + 1)

6. Total R3-curvaturetype functionals

Let S*(G) be the two-dimensional unit sphere of constant Gaussian cun@itaney(s)
an immersed curve i6%(G) with geodesic curvature(s), and curvature function iR3
denoted byt (s). We have seen that there are no closed critical poin (&) of thetotal
curvaturefunctional [ «. On the other hand, plane curves are precisely the critical points
of thetotal curvaturein R3, [ k. Itis natural then to investigate the existence of the closed
critical points of [ k when restricted to the sphere (other than circles). Thus, we consider,
in a little more general setting, functionals of the following type:

Fy) = f (k® 4+ 1)Y? ds, (31)
Y

wherex > 0, acting on the space of immersed closed cusvés S?(G).

We take a variation of(s) within the specified space of curves and use the first variation
formula given in(3). In particular,y € £2is a critical point of 7 if and only if the following
Euler—Lagrange equation is satisfied:

d_2 K K(K2 + G) _
ds2 (K2+)L)1/2 (K2+k)1/2

k(k? + 02 =0. (32)

We first investigate the existence of closed critical points of constant curvatur&ulére-
Lagrangeequations (32)are trivially satisfied by geodesics for any- 0. If « is a non-zero
constant, the above equation reduc&te A = 0. Thus, ifA £ G we do not have any other
critical points with non-zero constant curvaturdf G = A, then every circle is a critical
point for this functional.

Assume now that is a non-constant function. Fro(B) we get the first integral of the
Euler—Lagrangeequations ofF*

2 2
2(s) = ( * A) [(d = GY + d — ], (33)
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wherek; is the derivative with respect to the arclength parameterdd is a constant of
integration. This implies

A <d<G. (34)

Fix any A € (0, G). In order to find closed critical curves, we ne@3) to have periodic
solutions. For any! verifying (34) we have a periodic solution which we may take with
initial condition«,(0) = 0. In fact, by using, for example formula 2.266[6f, we see that

it is a periodic functioncg(s) given by

20X + ) _
2L+ o) —asin(2yG — As — (1/2))

whereaw = A(d —1)/(G —d) > 0varies in(0, oco) asd does in(x, G). Minima and maxima
of the above solutions are reached at—(7/2v/G — 1)) = —/a andx,(7r/2J/G — 1) =
J/a, respectively. We indistinctively use eithef;r(s) orlcg (s) todenote curvature. Therefore,
we have proved that for any € (0, G), there exists a 1-parameter family, (s); @ €
(0, 00)} of periodic solutions 0f33) which are given by(35). Let {y2; a € (0, 00)} be the
corresponding 1-parameter family of curves in the 2-sphere. These are our candidates to
closed critical points of".

For anyd € (A, G), we have fromProposition 2that 7 = (—1/(k? + M)Y2)T +
(—xks/ (K2 +21)%?)N, is a Killing field onyz}. Thus, using the Euler—Lagrangquation (4)
we have d1712/ds = —2GA(kk,/(k? +1)?). Theny); crosses the equator at the zeroes of its
curvature wherg7] is maximum. Since andk, do not vanish simultaneously, we see that at
the points where; is zero, we haved.7]2/ds? = (2GAx?/(k*+ 1))(G — 1) > 0 and|.J}?
reaches its minima. In shontg crosses the equator at inflection points and reaches at the
vertices the farthest points from the equator. Moreayes (—i/ (k% + A)Y/2)T is tangent
to )/L’} at the vertices. One can use now, one of the remarks at the &&ttbn 3to prove
thatb2dG = 1. Substituting this irf(10), we see that a curve of the above famyfly will
close up if and only if the angular progression in one periogiefvhich we denote now by

21//G=R) 2 12
A o) = «/5/ (M/E(K“(s) 4 ) ds.

Kﬁ (s) = (3%)

(36)

0 (k3 (s)(1 — d) — Ad)

is a rational multiple of 2. Without loss of generality, we assume tliat= 1. By using
(33)one has

Ve 2
M) =4 / »2Vd e,
0 (Bl —d) —rd)/(L—d)(?—Kk2)(KZ+ 1)
which after some computations and using formula 3.137[S]dbecomes
-4 /T =N - p? At p2(1— 2
T () B )]
Vit p2a-1) 2 1— 01— p?)

A o) =
(37)

whereK(p), [1(r/2, v, p) are the complete elliptic integrals of the first and the third kind,
respectively, of modulug = /o/(x + &) andv = p?/p?(1— 1)+ 1. By using the Heuman
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; 05 0.7 i ; 2 1/2
Fig. 3. Curves/; 3 andyjy 5 closed critical points ofy(/c + 02

Lambda functionAg, one can obtain

—4/ )
AMa) = /A K(p) — 2n(1— Ao(¥, p)), (38)

VA=) + pA(L - 1)
whered = arcsin//\/(x + p2(1— 1)), A € (0, 1). Now, p moves in(0, 1) aso varies in

(0,0). Then, we have lipp.oA*(@) = limg_oA*(@) = —2(x/~/1—21) and
lim,—1 A* (@) = limy— oo A*(@) = —oo. Hence for anyx € (0, 1) the angular pro-

gression ofy’, A*(a) decreases from-2(r/+/1— 1) to —oco as« varies from 0 tooo.
Hence, we have proved the following proposition.

Proposition 10. For anyA € (0, 1), and for any couple of integet®:, n) satisfyingn <
m~/1T =1, there exists a closed critical point; , of 7*(y) = fy(/c2 + M)Y2ds in S2(2).
y,),;’n closes up in n periods of its curvatufgiven in(35)) and m trips around the equator
(seeFig. 3. Any closed critical point ofF* is obtained in this way

Monotonicity of A*(a) would result in that the paifm, n) determines uniquely',ﬁ’n.
We have checked this numerically, 46g. 2b. Summarizing the above results, we get the
following proposition.

Proposition 11. LetF* : £2 — R the energy functional defined {81) acting on closed
curves ofs?(G) the 2-sphere of curvature G. Then

1. if A > 0, the only closed critical points are the geodesics

2. if A = G, the only closed critical points are the circles

3.if 0 < 1 < G, in addition to geodesicghe set of closed critical points of* is a
countably infinite family described iroposition 10

We get now some consequences of the second variation formula and corollaries. Let us
denote by, m € N, them-cover of the circle of curvaturein S(G), then we have the
following proposition.
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Proposition 12. Let P : 2 — R, the energy functional defined {81) acting on closed
curves ofS2(G). Then

1. If 0 < & < G an m-geodesie!” is stable if and only if

2
m - G

In particular, thel-geodesics are stable for everya 2-geodesic is stableif < (3/4)G;
a 3-geodesic is stable ¥ < (7/16)G and so on

2. Assume that = G. Theng" is stable if and only ifjm| = 1. Actually, as a consequence
of Fenchel’s theorerreveryl-circle is an absolute minimum

As we see fronProposition 11apart from the circles, there are no other closed critical
points in the 2-sphere of the toRP-curvature Of course one can obtain non-trivial critical
points of this functional by modifying the boundary conditions. For instance, we may
considerF(y) = fyk = fy(;c + 1)¥/2ds, acting on the space of curves with pinned ends

and given first order boundary dafayq. That is,$2pq is the space of regular curvesSa(1)
satisfyingy(0) = p, ¥(1) = ¢, (dy/dn)(0) = e1, (dy/dr)(1) = e, wherep, g € S*(1)
andey, e € TS?, are two fixed points of and tangent vectorsSfg1), respectively. Then,
computations oSections 2 and 8re basically the same and then a critical poinFog) :
$£2pq — R, is characterized by the Euler-Lagrareggiation (4which in this case reduces
to

KSS(KZ + 1) = 3kk;. (39)
If we assume that, = 0, then(39) can be easily integrated to

KSZ = A2(1<2 + 1)3, (40)
whereAZ e (0, 0o). This equation leads in turn to

2
2s) — (As+ B)

T 1— (As+ B)? (41)

with B € R. Let y be a critical point corresponding {d1). FromProposition 2and(40),

J = —?+ 1)~Y2T + AN, is a Killing vector ony, and we may choose geographical
coordinatesc(6, ) so that,xg = b.J. Moreover, since @7]2/ds = —2««,/(k? + 1), and
d?|712/ds?|=0 = —2«? < 0, we have that the only zero efis a maximum of 7]? and
therefore it is the point wherg crosses the equator. On the other hand, if we denofe by
andz the curvature and torsion gfin R3, then

%(s) = (1 — (As+ B)>) Y2, 7(s) = A(1L — (As+ B)®) /2

and thene(s)/k(s) = A, what means that is a generalized helix d®® contained irS%(1).
Hence the solutions to the variational problefty) : £2,q — R are spherical generalized
helices This result was already obtained by Sant@0] by using a different approach,
Fig. 4.
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Fig. 4. Non-closed curves critical points fif(x + 1)Y2ds.
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