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Closed generalized elastic curves inS2(1)
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Abstract

We study the existence and stability of (closed) curves inS2(1)which are critical points of generic
curvature energy functionals. Firstly, we compute the first and second variation formulas and obtain
first integrals of the Euler–Lagrange equations, then we establish conditions under which critical
points close up. We apply the results to analyze two concrete situations: a natural generalization
of the classical Euler–Bernoulli elastic functional and a constrained version of the total curvature
functional.
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1. Introduction

The curvatureκ, of a given curveγ : I → Mn in a Riemannian manifold, can be
interpreted as the tension thatγ receives at each point as a result of the way it is immersed
in the surrounding space. Bernoulli proposed in 1740 a simple geometric model for an
elastic curvein R2, according to which anelastic curveor elasticais a critical point of
theelastic energyfunctional

∫
γ
κ2. Elastic curves inR2 were already classified by Euler in

1743 but it was not until 1928 that they were studied also inR3 by Radon[19], who derived
the Euler–Lagrange equations and showed that they can be integrated by quadratures. The
elastica problem in real space forms has been recently considered under different approaches
(see for instance[7,11–14]).
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More generally, for a given differentiable functionP(κ), the geometric importance of
minimizing acurvature energyfunctional of the type�(γ) = ∫

γ
P(κ), defined on a certain

space of curves in the three-dimensional Euclidean spaceR3, was pointed out by Blaschke
in his book on Differential Geometry[5], where it is refereed to asRadon’s problem. On
the other hand, actions defined by�(γ) = ∫

γ
P(κ) in constant curvature space–times have

been used to describe models of relativistic particle withκ being the proper acceleration of
the particle[8,15,16,18].

Our purpose here is to study critical points of curvature energy functionals in the standard
2-sphere paying special attention to the closed ones. Apart from their own geometric signif-
icance, closed critical points of�(γ) = ∫

γ
P(κ) have been used also to provide construction

methods of Chen–Willmore submanifolds in higher dimensional spheres[2,6,17].
First part of the paper develops the common starting point for the various particular cases

that will be explored at the last sections. InSection 2we obtain the Euler–Lagrange equation
of �, and briefly derive its first integral, since they are basically known in the literature.
Guided by the ideas of Langer and Singer[12], we use a coordinate system adapted to
the problem, to give inSection 3conditions to be satisfied by critical points with periodic
curvature in order to close up. InSection 4we obtain an expression for the second variation
formula which allows us to get some applications to the stability of constant curvature
critical points.

The two final sections are devoted to apply the previous results to study natural choices
of concrete energy functionals. We choose, two particularly interesting concrete situa-
tions. In both cases, we solve the Euler–Lagrange equation obtaining periodic solutions
and give an explicit description of the closure condition by using the Jacobi elliptic
functions.

The simplest choice forP(κ) isP(κ) = κr, r ∈ N ∪{0}, and we refer to the critical points
of � asgeneralized r-elastica. If r = 0, thenP(κ) is constant andgeneralized 0-elastica
of � are simply geodesics. Ifr = 1, we have that� is thetotal curvature functional, and
it has been studied in[3,4]. In particular, there are no closed critical points of thetotal
curvaturein the 2-sphere. Whenr = 2, we have the classicalelastic curves. Closed elastic
curves in the 2-sphere have been classified by Langer and Singer[12]. We show that, for
r > 2, there are no closedgeneralized r-elasticain S2(G) (the 2-sphere of curvatureG),
other than geodesics. This surprising result forces us to enlarge the class of numbers where
r moves if we expect to find non-trivial closed critical points. If we want to find periodic
solutions of the Euler–Lagrange equation we prover must be lower than the curvature of
the sphereG. AssumingG = 1, andr = 1/2, we show that closed critical curves inS2(1)
form a countably infinite family.

On the other hand, it is known, that plane curves are the critical points of thetotal
curvaturefunctional inR3 [3]. It is an interesting question whether or not other critical
points inR3 of this functional appear when we take variations constrained to the sphere.
This leads us to consider inSection 6functionals of the typeFλ(γ) = ∫

γ
(κ2 + λ)1/2 ds,

λ > 0, defined on spaces of curves inS2(G). This type of functionals have also appeared as
models of a relativistic particle with maximal proper acceleration[8,16]. If λ > G the only
closed critical points are geodesics. Ifλ = G, we have thetotal R3-curvatureconstrained
to S2(G). In this case circles are the only closed critical points as expected. However, we
prove that there is a family of generalized helices inS2(1) which are critical points for the
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problem with pinned ends and first boundary data. Ifλ < G, we show that there exist a
countably infinite family of closed critical points and determine the multiple covers of the
geodesics that are stable.

2. Preliminaries

We shall denote byD the space of regularC4-curves inS2(G), that is the space of
C4-immersions ofI = [0,1] in S2(G),

D =
{
γ : I → S2(G); γ ∈ C4(I); dγ

dt

= 0

}
.

For a given curveγ in D, we denote byV(t) = dγ/dt = γ ′ the tangent vector field;T(t)
denotes unit tangent vector;v(t) = 〈V, V 〉1/2 the speed ofγ; N(t) the unit normal toγ; and
κ denotes the oriented geodesic curvature ofγ in S2(G).

We takeP(t) aC∞ function and consider the followingcurvature energy functional:

�(γ) =
∫
γ

P(κ) =
∫ L

0
P(κ)ds =

∫ 1

0
P(κ)vdt (1)

acting onD.
Let us assume thatΓ(w, t) = γw(t) : (−ε, ε)× → S2(G) is a variation ofγ in D with

γ(0, t) = γ, whose variation vector field along the curveγ is W = W(t) = (∂Γ/∂w)(0, t).
We shall also writeV = V(w, t), W = W(w, t), T = T(w, t), v = v(w, t), N = N(w, t),
etc., with the obvious meanings. As usual we uses to denote the arclength parameter and
γ(s), V = V(w, s), W = W(w, s), T = T(w, s), v = v(w, s), etc., for the corresponding
reparameterizations. Thens ∈ [0, L], whereL is the length ofγ.

The restriction of acurvature energy functionalto a variation is denoted by the same
letter,�(w) = �(γw(t)). Now we want to compute the first derivative of�(w).

We shall make use of the following notation:P ′(κ) = dP/dκ, and

K= P ′(κ)N, J = (κP ′(κ) − P(κ))T + dP ′

ds
N,

E=
(
(κ2 + G)P ′(κ) + d2P ′

ds2
− κP(κ)

)
N. (2)

By using Lemma 1 of[12], the firstFrenet formula∇T T = κN and integrating by parts,
one can obtain the following proposition.

Proposition 1 (First variation formula).LetΓ(w, s) = γw(t) be a variation ofγ by curves
in D and�(γ) = ∫

γ
P(κ) a curvature energy functional acting onD. Then the following

formula holds:

d�

dw

∣∣∣∣
w=0

=
(∫ L

0
〈E,W〉 ds

)
+ B[W, γ]L0 , (3)

where the boundary term is given byB[W, γ]L0 = [〈K,∇TW〉 − 〈J,W〉]L0 .
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Now, we may see� acting on subspaces ofD formed by curves which satisfy, in addition,
a suitable set of boundary conditions. With an eye in our applications, we first consider that�

acts onΩ, the space of smooth closed curves ofS2(G) (although the following computations
might be equally apply to other cases, for instance, to the space of curvesΩpq, with pinned
ends and given first order boundary data). In such cases, the above boundary term drops
out. Thus a critical point of� in such spaces will be characterized by theEuler–Lagrange
equationE = 0, in other words by

(κ2 + G)P ′(κ) + d2P ′

ds2
= κP(κ). (4)

One may want to consult[10] for a different derivation of(4).
If dP ′/ds = 0, then we may assumeP(κ) = κ + λ and either we do not have critical

points ifλ = 0, or the only closed critical points are circles of curvatureG/λ otherwise[3].
This case is basically thetotal curvaturefunctional.

Assume dP ′/ds 
= 0. ThenE = 0 on a critical pointγ of �. To facilitate integration of
the Euler–Lagrange equations we look for a first integral of it. From(2), we observe that
we may writeE = ∇TJ+ GK, hence

0 = 〈E,J 〉 = 〈∇TJ+ GK,J 〉 = 1

2

d

ds
(〈J,J 〉 + G〈K,K〉)(s),

and therefore〈J,J 〉 +G〈K,K〉 is constant alongγ, which in combination with(2) allows
us to obtain a first integral ofE = 0(

dP ′

ds

)2

+ (κP ′(κ) − P(κ))2 + G(P ′(κ))2 = d. (5)

First integrals of the Euler–Lagrangeequations (4)in space forms are basically known
[1,10,16].

3. Closure conditions

Since we are mainly interested in closed solutions of the Euler–Lagrange equations, we
must seek for periodic solutions of(5). Any periodic solution will give rise to a unique (up
to isometries) curve inS2(G) which need not be a closed curve. On the other hand, in their
study of the classical elastica in two-dimensional space forms[12], Langer and Singer find
Killing fields along an elastic curveγ(s) expressible in terms of the local invariants of the
curve and use them to determine closure conditions. By using this approach we can also
establish closure condition for critical curves with periodic curvature in the general case
[1].

Let γ : I = [0,1] → S2(G) be an immersed regular curve in the 2-sphere of constant
sectional curvatureG. A vector fieldW is called aKilling field alongγ [12], if for any
variation in the direction ofW we have

∂v

∂w
= ∂κ

∂w
= 0. (6)
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From Lemma 1 of[12], we can see thatW is a Killing field alongγ, if and only if,

〈∇TW, T 〉 = 0, (7)

〈∇2
TW,N〉 + G〈W,N〉 = 0. (8)

Moreover, it was proved in[12] that a Killing field along a curveγ contained in a two-
dimensional real space form is the restriction toγ of a Killing field defined on whole space.
Then we have the following proposition.

Proposition 2. Letγ : I = [0,1] → S2(G) be an immersed regular curve inS2(G) which
is a critical point of� acting onD. Then the vector fieldJ defined as in(2) is a Killing
field alongγ and, therefore, it is the restriction toγ of a Killing field ofS2(G).

Proof. Using (2), we have∇TJ = ((d2P ′/ds2) + (κP ′(κ) − P(κ)))N which trivially
satisfies(7). Differentiating again and using the Euler–Lagrangeequation (4), we have
〈∇2

TJ, N〉 = −G(dP ′/ds) which shows(8). �

Assume thatκ is a periodic solution of(5) with periodρ. Let us denote byγ the curve in
S2(G) of curvatureκ. Now, one can use the above proposition to choose spherical coordi-
natesx(θ, ψ) = ( cosθ sinψ, sinθ sinψ, cosψ), so that its equator gives the only integral
geodesic ofJ : xθ = bJ. Combining this with(2) and (5), we have

θ′(s) = 〈T, xθ〉
sin2ψ

= κP ′(κ) − P(κ)

b(d − G(P ′(κ))2)
. (9)

Hence we have the following proposition.

Proposition 3. Letκ be a periodic solution of(5) with periodρ. Letγ be the corresponding
curve inS2(G). Thenγ is closed(and therefore a critical point of�(γ) = ∫

γ
P(κ) in Ω),

if and only if, its progression angle in one period of the curvature,

Λ� =
∫ ρ

0

κP ′(κ) − P(κ)

b(d − G(P ′(κ))2)
ds, (10)

is a rational multiple of2π.

Remarks. In many applications it is also important to determine the progression angle
range of variation as accurately as possible[2,12].Λ� depends on two parametersd ∈ R+,
b ∈ R. When looking for periodic solutions of(5), d is normally restricted to lie in a certain
intervalC. Then, if we want to know the variation ofΛ� asd moves inC, we must get
some control on the normalization factorb. This is possible in many cases. Letd be a given
number inC and denote byκd a periodic solution of(5) andγd the curve with curvatureκd
in S2(G).

(1) Assume first thatκd reaches a zero ofP ′ at some points0 and thatγd crosses the
equator determined by the rotation fieldJ. SinceP ′(κ(s0)) = P ′(s0) = 0, we have that
(P ′)2 takes an absolute minimum inκ(s0) and, therefore|J|2 = d − G(P ′)2 takes its
maximum value onγd at s0, in other wordsγd crosses the equator at the instants0, and
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thenψ(s0) = π/2. Hence evaluation ats0 of |xθ|2 = b2|J|2 = sin2ψ/G, would give
Gb2d = 1, which can be used to simplify(10).

(2) As another example, assume now thatγd has a vertex ats0 (κd(s0) = 0), which is not
either of the poles ofS2(G) as determined byJ : (κdP ′(κd)−P(κd))(s0) 
= 0. LetΣ be
the integral curve ofJ atγd(s0) = p0 and denote byκ0 the geodesic curvature ofΣ at
p0. Thenκ0 = −GP′/(κdP ′(κd) − P(κd))(s0), which combined with(2) and (5)gives
|xθ|2 = b2|J|2 = b2(κdP

′(κd) − P(κd))
2 = 1/(κ2

0 + G) = (κdP
′(κd) − P(κd))

2/Gd.
Therefore, we getGb2d = 1 again.

4. Second variation formula

Let us compute now the second variation formula. Since our applications will be focused
mainly in closed critical curves of the sphere, we restrict ourselves toΩ the space of closed
curves inS2(G). Assume thatγ is a critical point of� : Ω → R, �(γ) = ∫

γ
P(κ) in

the real space formS2(G). For any variation ofγ in Ω, Γ(w, s), the first derivative is
d�/dw = ∫

γw
〈E,W〉 and, therefore, sinceE(γ) = 0, we can write

d2�

dw2

∣∣∣∣
w=0

=
∫
γ

〈W,∇WE 〉. (11)

We may assume thatW(s) = φ(s)N(s), then

d2�

dw2

∣∣∣∣
w=0

=
∫
γ

φW〈N, E 〉. (12)

Now

W〈E, N〉 = (κ2
s P

′′′′ + κssP
′′′ + (κ2 + G)P ′′ + κP ′ − P)W(κ)

+ 2κsP
′′′W(κs) + P ′′W(κss). (13)

But using formula (5) of Lemma 1.1[12], we have

W(κ) = φss+ (κ2 + G)φ. (14)

On the other hand, by formula(2) of the same lemma, [W,T ] = −〈∇TW, T 〉T = κφT .
Then,W(κs) = W(T(κ)) = [W,T ](κ) + T(W(κ)) = φκκs + (W(κ))s, obtaining thus

W(κs) = φsss+ (κ2 + G)φs + 3κκsφ. (15)

Analogously,W(κss) = φκκss+ (W(κs))s would give

W(κss) = φssss+ (κ2 + G)φss+ 5κκsφs + (3κ2
s + 4κκss)φ. (16)

Hence combining(12)–(16)and integrating by parts, we obtain after a long computation
the following proposition.
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Proposition 4. Assume thatγ is a critical point with curvatureκ of the curvature energy
functional� : Ω → R, �(γ) = ∫

γ
P(κ) acting on the space of closed curves of the sphere

S2(G), then

d2�

dw2

∣∣∣∣
w=0

=
∫
γ

m1(s)φ
2
ss−

∫
γ

m2(s)φ
2
s +

∫
γ

m3(s)φ
2, (17)

where

m1(s) = P ′′(κ), m2(s) = 2(κ2 + G)P ′′(κ) + κP ′(κ) − P(κ),

m3(s) = (κ2 + G)
d2P ′′

ds2
+ (κ2)s

dP ′′

ds
+ (κ2 + G)2P ′′(κ) + 4κ

d2P ′

ds2
+ 3κs

dP ′

ds
+ κ(κ2 + G)P ′(κ) − (κ2 + G)P(κ). (18)

In many applications, circles are critical points of energy functionals. For instance, ifP

is an even function then geodesics are always critical points. In such cases second variation
formula simplifies to the following proposition.

Proposition 5. Letγ be a circle with constant curvatureκ ≡ α of a sphereS2(G). Assume
that γ is a critical point of the energy functional� : Ω → R, �(γ) = ∫

γ
P(κ) acting on

closed curves of the sphereS2(G). Then the second variation formula atγ is

d2�

dw2

∣∣∣∣
w=0

=
∫
γ

φ2
ssP

′′(α) −
∫
γ

(2(α2 + G)P ′′(α) + αP ′(α) − P(α))φ2
s

+
∫
γ

(α2 + G)((α2 + G)P ′′(α) + αP ′(α) − P(α))φ2. (19)

Let us denote byγm them-cover of the above circleγ. We parameterize it asγm(s) =
(r cos(s/r), r sin(s/r),0), s ∈ [0, L = 2πmr], wherer = (α2 + G)−1/2 is the radius of
γ. Then we can writeφ as a Fourier series,φ(s) = (a0/2) + ∑∞

h=1[ah cos(h(s/mr)) +
bh sin(h(s/mr))], which can be put in(19).

If P ′′(α) 
= 0 we get

d2�

dw2

∣∣∣∣
w=0

= πm(α2 + G)3/2P ′′(α)(1 − ζ)
a2

0

2
+ πm(α2 + G)3/2P ′′(α)

×
∞∑
h=1

[
(a2

h + b2
h)

((
h

m

)2

− 1

)((
h

m

)2

− 1 + ζ

)]
, (20)

where

ζ = P(α)G

(α2 + G)2P ′′(α)
. (21)

If P ′′(α) = 0, then

d2�

dw2

∣∣∣∣
w=0

= −P(α)G

{
πm(α2 + G)−1/2a

2
0

2
+

+∞∑
h=1

[
(a2

h + b2
h)

(
1 −

(
h

m

)2
)]}

.

(22)
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In our context, we shall say that a critical pointγ of � is stable, if for any variationγw of
γ, (d2�/dw2)|w=0 ≥ 0. By inspection of the above formulas(20) and (22), we can draw
some consequences about the stability of circles in spheres. For instance, ifP ′′(α) = 0
andP(α) 
= 0, then we see from(22) that there are choices of the variation fieldW which
makes negative the second derivative. Proceeding in a similar way we obtain the following
proposition.

Proposition 6. Let � : Ω → R, �(γ) = ∫
γ
P(κ), a curvature energy functional acting

on the space of closed curves ofS2(G). Assume that a circleγ of curvatureα is a critical
point of� and denote byγm the m-cover ofγ. Thenγm is stable, if and only if, P ′′(α) > 0
and ∣∣∣∣∣m

(
1 −

√
1 − GP(α)

P ′′(α)(α2 + G)2

)∣∣∣∣∣ ≤ 1. (23)

In particular, ifγ is a geodesic, we have the following corollary.

Corollary 7. Under the conditions of the above proposition, suppose thatγ is a geodesic
in S2(G). Thenγm is stable, if and only if, P ′′(α) > 0 and∣∣∣∣∣m

(
1 −

√
1 − P(0)

GP′′(0)

)∣∣∣∣∣ ≤ 1. (24)

Condition(24) is equivalent to

−G
1

m

(
2 + 1

m

)
≤ P(0)

P ′′(0)
≤ G

1

m

(
2 − 1

m

)
. (25)

5. Generalized elastic curves

The most natural choice forP(κ) isP(κ) = κr, r ∈ N, and�(γ) = ∫
γ
κr. If r = 1, it is the

total curvature functional and one can easily see from(4) that there are no solutions of the
Euler–Lagrange equations. Ifr = 2, �(γ) = ∫

γ
κ2 is the classicalEuler–Bernoulli elastic

functional whose closed critical points inS2(1) have been studied and classified by Langer
and Singer[12]. Now assume thatr is a natural number greater than 2 and, without loss of
generality, thatG = 1. If κ is constant, then from(4) we haveκr−1((r − 1)κ2 + r) = 0 and
then there are no critical points of constant curvature other than geodesics. Ifκ were not a
constant function, then we could use the first integral of the Euler–Lagrangeequation (5)
to get

r2(r − 1)2κ2(r−2)κ2
s = d − (r − 1)2κ2r − r2κ2r−2. (26)

The curvatureκ of a closed critical point of� should be a periodic solution of(26).
Thenκ(s) ∈ [β, α], whereβ andα are the minimum and maximum ofκ(s), respectively,
what would imply that they are roots of the polynomialQ(x) = d − (r − 1)2x2r −
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r2x2r−2, d > 0. But thenβ should be positive, otherwise there would exist a points0
with κ(s0) = 0 and we would have from(26) that d = 0, which is impossible. This is
a contradiction sinceQ(x) has only one positive root. Hence we have the following pro-
position.

Proposition 8. Let � : Ω → R, �(γ) = ∫
γ
κr, r ∈ N, a curvature energy functional

acting on the space of closed curves ofS2(1). Then:

1. if r = 1, there are no critical points of� (no matter if they are closed or not);
2. if r = 2, � is the classical Euler–Bernoulli elastic functional and its closed critical

points have been classified by Langer and Singer[12];
3. if r > 2, the only closed critical points of� are the geodesics.

Geodesics are absolute minima ifr ≥ 2 is even and from(19)we see that on a geodesic,
the second derivative(d2�/dw2)|w=0 = 2

∫
(φss+φ)2 ≥ 0 if r = 2 and vanishes identically

if r > 2.
The surprising result obtained in the above proposition leads one to ask if, instead we

might find non-trivial closed critical points whenr is not a natural number. For simplicity,
we assume thatr = 1/2 and that� acts onΩ̃ the space of convex (κ > 0) closed curves of
S2(1). From the Euler–Lagrangeequation (4)we see that the only solutions with constant
curvature are the circles withκ = √

r/(1 − r) = 1. Assuming that the curvature is not
constant, we have to look for periodic solutions of the first integral(5) which for r = 1/2
reduces to

κ2
s = −4κ2(κ2 − 4dκ + 1), (27)

with d > 0. Actually periodicity condition implyd > 1/2. HenceQ(x) = −4x2(x2 −
4dx+ 1) has two positive solutionsα and 1/α with α > 1. Combining(27) and formula
2.226 of[9], we obtain

κα(s) = 2α(1 + α2)

(1 + α2)2 + (1 − α2)2 cos 2ρ(s) − 2α(α2 − 1) sin 2ρ(s)
, (28)

whereρ(s) = s − arctan(1/α), d = (1 + α2)/4α, α ∈ (1,∞). Thusκα(s) is a periodic
solution of(27) which reaches its minimum value atκα(0) = 1/α and the maximum at
κα(π/2) = α. Therefore, we have proved that there exists a 1-parameter family{κα(s);α ∈
(1,∞)} of periodic solutions of(27) which are given by(28). Let {γα;α ∈ (1,∞)} be the
corresponding 1-parameter family of curves in the 2-sphere. These are our candidates to be
closed critical points of�.

Now, we are in condition to apply remark(2) at the end ofSection 3, and we may take
bd2 = 1 in Proposition 3. Hence, a curve of the above familyγα will close up, if and only
if, it satisfies the closure condition(10), that is if and only if, the angular progression in one
period ofκα, which we denote now by

Λ(α) = −
∫ π

0

( √
dκ

3/2
α (s)

4dκα(s) − 1

)
ds, (29)
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is a rational multiple of 2π. By combining(27) and (29)andd = (1 + α2)/4α one has

Λ(α) = 2
∫ α

1/α

√
((1 + α2)/4α)κ1/2

(1 − ((1 + α2)/α)κ)
√
(κ − (1/α))(α − κ)

dκ,

which after some computations and using formulas 3.137-3 and 3.131-3 of[9] give

Λ(α) = −2

√
1 − p2

2 − p2

[
(1 − p2)Π

(π
2
, ν, p

)
+ K(p)

]
, (30)

whereK(p), Π(π/2, ν, p) are the complete elliptic integrals of the first and the third kind,
respectively, of modulusp =

√
(α2 − 1)/α andν = p2(2−p2). Now,p moves in(0,1) as

α varies in(1,∞), then, we have limp→0 Λ(α) = −√
2π and limp→1 Λ(α) = −π. Hence

the angular progression in one period ofγα, Λ(α) increases continuously from−√
2π to

−π asα varies from 1 to∞. Hence, we have proved the following proposition.

Proposition 9. For any couple of integersm, n satisfyingn < 2m <
√

2n, there exists a
convex curveγm,n, which is a closed critical point of�(γ) = ∫

γ
κ1/2 in the unit sphere

S2(1). γm,n closes up after n periods of its curvature(given in(28)) and m trips around the
equator(seeFig. 1). Any closed generalized(1/2)-elastica is obtained as above.

To show that a pair of integers(m, n) determines thegeneralized(1/2)-elasticauniquely
would require to show monotonicity ofΛ(α) along(1,∞). We have established this nu-
merically as part a ofFig. 2shows.

Finally, let us denoteεm1 them-cover of the circle of geodesic curvature 1. It is the only
circle of the sphere that is a critical point for�(γ) = ∫

γ
κ1/2. By using(20) and (21)we see

thatεm1 is unstable. Actually, if|m| = 1,2, then(d2�/dw2)|w=0 < 0, and they are “local
maxima”.

Fig. 1. Curvesγ2,3 andγ5,8 closed critical points of
∫
γ
κ1/2.
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Fig. 2. (a)P(κ) = κ1/2; (b) P(κ) = (κ + λ)r .

6. Total R3-curvature type functionals

Let S2(G) be the two-dimensional unit sphere of constant Gaussian curvatureG andγ(s)
an immersed curve inS2(G) with geodesic curvatureκ(s), and curvature function inR3

denoted bȳκ(s). We have seen that there are no closed critical points inS2(G) of the total
curvaturefunctional

∫
κ. On the other hand, plane curves are precisely the critical points

of thetotal curvaturein R3,
∫
κ̄. It is natural then to investigate the existence of the closed

critical points of
∫
κ̄ when restricted to the sphere (other than circles). Thus, we consider,

in a little more general setting, functionals of the following type:

Fλ(γ) =
∫
γ

(κ2 + λ)1/2 ds, (31)

whereλ > 0, acting on the space of immersed closed curvesΩ in S2(G).
We take a variation ofγ(s) within the specified space of curves and use the first variation

formula given in(3). In particular,γ ∈ Ω is a critical point ofFλ if and only if the following
Euler–Lagrange equation is satisfied:

d2

ds2

(
κ

(κ2 + λ)1/2

)
+ κ(κ2 + G)

(κ2 + λ)1/2
− κ(κ2 + λ)1/2 = 0. (32)

We first investigate the existence of closed critical points of constant curvature. TheEuler–
Lagrangeequations (32), are trivially satisfied by geodesics for anyλ > 0. If κ is a non-zero
constant, the above equation reduce toG−λ = 0. Thus, ifλ 
= G we do not have any other
critical points with non-zero constant curvatureκ. If G = λ, then every circle is a critical
point for this functional.

Assume now thatκ is a non-constant function. From(5) we get the first integral of the
Euler–Lagrangeequations ofFλ

κ2
s (s) =

(
κ2 + λ

λ

)2

[(d − G)κ2 + λ(d − λ)], (33)
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whereκs is the derivative with respect to the arclength parameters andd is a constant of
integration. This implies

λ < d < G. (34)

Fix anyλ ∈ (0,G). In order to find closed critical curves, we need(33) to have periodic
solutions. For anyd verifying (34) we have a periodic solution which we may take with
initial conditionκd(0) = 0. In fact, by using, for example formula 2.266 of[9], we see that
it is a periodic functionκ2

d(s) given by

κ2
d(s) = 2λ(λ + α)

(2λ + α) − α sin(2
√
G − λs − (π/2))

− λ, (35)

whereα = λ(d−λ)/(G−d) > 0 varies in(0,∞) asd does in(λ,G). Minima and maxima
of the above solutions are reached atκd(−(π/2

√
G − λ)) = −√

α andκd(π/2
√
G − λ) =√

α, respectively. We indistinctively use eitherκ2
d(s) orκ2

α(s) to denote curvature. Therefore,
we have proved that for anyλ ∈ (0,G), there exists a 1-parameter family{κα(s);α ∈
(0,∞)} of periodic solutions of(33) which are given by(35). Let {γλ

α ;α ∈ (0,∞)} be the
corresponding 1-parameter family of curves in the 2-sphere. These are our candidates to
closed critical points ofFλ.

For anyd ∈ (λ,G), we have fromProposition 2that J = (−λ/(κ2 + λ)1/2)T +
(−λκs/(κ

2+λ)3/2)N, is a Killing field onγλ
d . Thus, using the Euler–Lagrangeequation (4)

we have d|J|2/ds = −2Gλ(κκs/(κ
2 +λ)2). Thenγλ

d crosses the equator at the zeroes of its
curvature where|J| is maximum. Sinceκ andκs do not vanish simultaneously, we see that at
the points whereκs is zero, we have d2|J|2/ds2 = (2Gλκ2/(κ2 +λ))(G−λ) > 0 and|J|2
reaches its minima. In short,γλ

d crosses the equator at inflection points and reaches at the
vertices the farthest points from the equator. Moreover,J = (−λ/(κ2 + λ)1/2)T is tangent
to γλ

d at the vertices. One can use now, one of the remarks at the end ofSection 3to prove
thatb2dG = 1. Substituting this in(10), we see that a curve of the above familyγλ

α will
close up if and only if the angular progression in one period ofγλ

α , which we denote now by

Λλ(α) =
√
G

∫ 2(π/
√
G−λ)

0

(
λ
√
d(κ2

α(s) + λ)1/2

(κ2
α(s)(1 − d) − λd)

)
ds, (36)

is a rational multiple of 2π. Without loss of generality, we assume thatG = 1. By using
(33)one has

Λλ(α) = 4
∫ √

α

0

λ2
√
d

(κ2
α(1 − d) − λd)

√
(1 − d)(α2 − κ2

α)(κ
2
α + λ)

dκ,

which after some computations and using formula 3.137.5 of[9] becomes

Λλ(α) = −4
√
λ(1 − λ)(1 − p2)√
λ + p2(1 − λ)

[
Π
(π

2
, ν, p

)
+ λ + p2(1 − λ)

(1 − λ)(1 − p2)
K(p)

]
,

(37)

whereK(p), Π(π/2, ν, p) are the complete elliptic integrals of the first and the third kind,
respectively, of modulusp = √

α/(λ + α) andν = p2/p2(1−λ)+λ. By using the Heuman
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Fig. 3. Curvesγ0.5
7,3 andγ0.7

10,3 closed critical points of
∫
γ
(κ2 + λ)1/2.

Lambda functionΛ0, one can obtain

Λλ(α) = −4
√
λ√

(1 − λ)(λ + p2(1 − λ))
K(p) − 2π(1 − Λ0(ϑ, p)), (38)

whereϑ = arcsin
√
λ/(λ + p2(1 − λ)), λ ∈ (0,1). Now,p moves in(0,1) asα varies in

(0,∞). Then, we have limp→0 Λ
λ(α) = limα→0 Λ

λ(α) = −2(π/
√

1 − λ) and
limp→1 Λ

λ(α) = limα→∞ Λλ(α) = −∞. Hence for anyλ ∈ (0,1) the angular pro-
gression ofγλ

α , Λλ(α) decreases from−2(π/
√

1 − λ) to −∞ asα varies from 0 to∞.
Hence, we have proved the following proposition.

Proposition 10. For anyλ ∈ (0,1), and for any couple of integers(m, n) satisfyingn <

m
√

1 − λ, there exists a closed critical pointγλ
m,n of Fλ(γ) = ∫

γ
(κ2 + λ)1/2 ds in S2(1).

γλ
m,n closes up in n periods of its curvature(given in(35)) and m trips around the equator

(seeFig. 3). Any closed critical point ofFλ is obtained in this way.

Monotonicity ofΛλ(α) would result in that the pair(m, n) determines uniquelyγλ
m,n.

We have checked this numerically, seeFig. 2b. Summarizing the above results, we get the
following proposition.

Proposition 11. LetFλ : Ω → R the energy functional defined in(31) acting on closed
curves ofS2(G) the2-sphere of curvature G. Then:

1. if λ > 0, the only closed critical points are the geodesics;
2. if λ = G, the only closed critical points are the circles;
3. if 0 < λ < G, in addition to geodesics, the set of closed critical points ofFλ is a

countably infinite family described inProposition 10.

We get now some consequences of the second variation formula and corollaries. Let us
denote byεmr , m ∈ N, them-cover of the circle of curvaturer in S2(G), then we have the
following proposition.
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Proposition 12. LetFλ : Ω → R, the energy functional defined in(31) acting on closed
curves ofS2(G). Then:

1. If 0 < λ < G an m-geodesicεmr is stable, if and only if

(
m − 1

m

)2

≤ 1 − λ

G
.

In particular, the1-geodesics are stable for everyλ; a2-geodesic is stable ifλ < (3/4)G;
a 3-geodesic is stable ifλ < (7/16)G and so on.

2. Assume thatλ = G. Thenεmr is stable if and only if, |m| = 1.Actually, as a consequence
of Fenchel’s theorem, every1-circle is an absolute minimum.

As we see fromProposition 11, apart from the circles, there are no other closed critical
points in the 2-sphere of the totalR3-curvature. Of course one can obtain non-trivial critical
points of this functional by modifying the boundary conditions. For instance, we may
considerF(γ) = ∫

γ
κ̄ = ∫

γ
(κ + 1)1/2 ds, acting on the space of curves with pinned ends

and given first order boundary data,Ωpq. That is,Ωpq is the space of regular curves inS2(1)
satisfyingγ(0) = p, γ(1) = q, (dγ/dt)(0) = e1, (dγ/dt)(1) = e2, wherep, q ∈ S2(1)
ande1, e2 ∈ TS2, are two fixed points of and tangent vectors toS2(1), respectively. Then,
computations ofSections 2 and 3are basically the same and then a critical point ofF(γ) :
Ωpq → R, is characterized by the Euler–Lagrangeequation (4)which in this case reduces
to

κss(κ
2 + 1) = 3κκs. (39)

If we assume thatκs 
= 0, then(39)can be easily integrated to

κ2
s = A2(κ2 + 1)3, (40)

whereA2 ∈ (0,∞). This equation leads in turn to

κ2(s) = (As+ B)2

1 − (As+ B)2
(41)

with B ∈ R. Let γ be a critical point corresponding to(41). FromProposition 2and(40),
J = −(κ2 + 1)−1/2T + AN, is a Killing vector onγ, and we may choose geographical
coordinatesx(θ, ψ) so that,xθ = bJ. Moreover, since d|J|2/ds = −2κκs/(κ2 + 1)2, and
d2|J|2/ds2|κ=0 = −2κ2

s < 0, we have that the only zero ofκ is a maximum of|J|2 and
therefore it is the point whereγ crosses the equator. On the other hand, if we denote byκ̄

andτ the curvature and torsion ofγ in R3, then

κ̄(s) = (1 − (As+ B)2)−1/2, τ(s) = A(1 − (As+ B)2)−1/2

and thenτ(s)/κ̄(s) = A, what means thatγ is a generalized helix ofR3 contained inS2(1).
Hence the solutions to the variational problemF(γ) : Ωpq → R are spherical generalized
helices. This result was already obtained by Santalo[20] by using a different approach,
Fig. 4.
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Fig. 4. Non-closed curves critical points of
∫
γ
(κ + 1)1/2 ds.
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